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This supplementary appendix is organized as follows. Appendix C provides additional

empirical results used to explore the sensitivity of our results to key parameter values. Ap-

pendix D explains how we compute the steady state of our model and the transitional dy-

namics. Appendix E provides further details and quantitative results for two variations on

our benchmark model with monopolistic competition: (i) where firm heterogeneity arises

from persistence differences in quality across firms, and (ii) where we replace Kimball de-

mand with symmetric translog demand. Appendix F analytically characterizes the aggregate

markup with both Kimball demand and symmetric translog demand. These results also give

us the mappingsM(N) and Z(N) that are crucial ingredients of our computational strategy.

Appendix G derives value-added productivity in our model. Appendix H reports a simple

formula for the welfare costs of markups in a static version of our model. Finally Appendix I

analyzes the ‘love for variety’ effect in our model with Kimball demand.
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C Additional empirical results

In this appendix we present additional empirical results that explore the sensitivity of our

results to key parameter values.

Returns to scale. As discussed in Appendix B in the main text, our estimates of firm-

level markups µit(s) require an estimate of the elasticity of output with respect to labor

αlt(s). In turn, to estimate this elasticity we need an estimate of the overall returns to

scale (RTS) in production, i.e., RTS := αkt (s) + αlt(s) + αxt (s). Given the returns to scale,

we can calculate firm-level markups and then estimate the key slope coefficient b from the

within-sector relationship between markups and market shares.

To assess the sensitivity of our results to this assumption, Table C1 reports the estimated

slope coefficient b = ε/σ̄ for alternative values of the returns to scale. In particular, if we

assume decreasing returns to scale a given input expenditure share implies proportionately

lower output elasticities and hence lower levels of the implied markups. If we assume mildly

decreasing returns to scale, RTS = 0.95 we find that the slope coefficient b barely changes.

It gets slightly larger, rising from our benchmark 0.162 to 0.174, if we assume more strongly

decreasing returns to scale, RTS = 0.90.

Sector heterogeneity. Our benchmark calibration takes the model at face-value and im-

poses a common slope coefficient b(s) = b. To assess the sensitivity of our results to this

assumption, we provide alternative estimates of sector-specific b(s) in two ways.

First, in Table C2 we report estimates of b(s) with sectors selected by concentration ratios.

In particular, we report b(s) separately for sectors s with 4-firm concentration ratio (CR4)

below and above 40%, a common threshold in the literature. The slope coefficients are very

similar across sectors with different concentration levels. Second, in Table C3 we report a full

set of b(s) estimated separately for each 3-digit NAICS sector. For the main specification of

interest, with sector × year and firm × sector fixed effects, we find the slope coefficient b(s)

range from a low of b(s) = 0.081 in Wood Product Manufacturing to a high of b(s) = 0.242 in

Leather and Allied Product Manufacturing. Our benchmark estimate of b = 0.162 is almost

exactly the midpoint of this range.
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Table C1: Sensitivity to Returns to Scale

Dependent Variable 1
µit(s)

+ log
(

1− 1
µit(s)

)

RTS = 1.00 RTS = 0.95 RTS = 0.90

logωit(s) 0.162 0.162 0.174
(0.002) (0.002) (0.003)

Sector × Year FE Y Y Y
Firm FE Y Y Y

R2 0.531 0.536 0.540
Observations 369,000 328,000 315,000

Sensitivity of estimated slope coefficent b = ε/σ̄ to assumed returns to scale (RTS). Firm-level markups µit(s) constructed
using data from the US Census of Manufactures from 1972 to 2012 as discussed in Appendix B in the main text. Benchmark
specification assumes RTS := αt(s)l + αkt (s) + αxt (s) = 1. Estimated slope coefficient robust to RTS = 0.95 and RTS = 0.90.
Standard errors clustered at the firm level. Number of observations drops with lower RTS because we exclude observations with
µit(s) < 1 so that the LHS of (59) is well-defined.

Table C2: Sensitivity to Sectoral Concentration

Dependent Variable 1
µit(s)

+ log
(

1− 1
µit(s)

)

Benchmark CR4 > 40% CR4 < 40%

logωit(s) 0.162 0.162 0.163
(0.002) (0.009) (0.002)

Sector × Year FE Y Y Y
Firm FE Y Y Y

R2 0.531 0.536 0.530
Observations 369,000 21,000 348,000

Sensitivity of estimated slope coefficent b = ε/σ̄ to sectoral concentration. Firm-level markups µit(s) constructed using data
from the US Census of Manufactures from 1972 to 2012 as discussed in Appendix B in the main text. Sectors with four-firm
concentration ration (CR4) > 40% have almost identical b to sectors with less concentration. Standard errors clustered at the
firm level.
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Table C3: Sector-Specific Relationships Between Markups and Market Shares

Dependent Variable 1
µit(s)

+ log
(

1− 1
µit(s)

)

logωit(s) b(s) s.e. Obs. b(s) s.e. Obs.

311 Food Manufacturing 0.058 0.002 36,500 0.179 0.009 22,000
312 Beverage and Tobacco Product Manufacturing 0.065 0.007 4,900 0.148 0.027 3,000
313 Textile Mills 0.067 0.006 6,500 0.202 0.022 3,900
314 Textile Product Mills 0.063 0.005 11,000 0.208 0.018 6,000
315 Apparel Manufacturing 0.097 0.003 31,500 0.112 0.010 12,500
316 Leather and Allied Product Manufacturing 0.038 0.008 4,100 0.242 0.030 2,400
321 Wood Product Manufacturing 0.108 0.003 31,000 0.081 0.011 19,000
322 Paper Manufacturing 0.037 0.005 9,800 0.153 0.019 6,300
323 Printing and Related Support Activities 0.035 0.002 71,000 0.098 0.008 4,3000
324 Petroleum and Coal Products Manufacturing 0.034 0.007 3,300 0.095 0.021 2,200
325 Chemical Manufacturing 0.058 0.003 19,000 0.135 0.009 12,000
326 Plastics and Rubber Products Manufacturing 0.070 0.003 27,000 0.135 0.010 17,000
327 Nonmetallic Mineral Product Manufacturing 0.046 0.003 32,500 0.119 0.009 22,000
331 Primary Metal Manufacturing 0.070 0.005 12,500 0.212 0.016 8,300
332 Fabricated Metal Product Manufacturing 0.086 0.002 115,000 0.157 0.006 74,500
333 Machinery Manufacturing 0.054 0.002 58,500 0.116 0.008 37,500
334 Computer and Electronic Product Manufacturing 0.043 0.002 27,500 0.123 0.009 14,000
335 Electrical Equipment, Appliance, and Component Manufacturing 0.055 0.004 13,000 0.154 0.014 7,900
336 Transportation Equipment Manufacturing 0.050 0.003 17,500 0.195 0.013 9,900
337 Furniture and Related Product Manufacturing 0.075 0.003 34,000 0.166 0.012 20,000
339 Miscellaneous Manufacturing 0.054 0.002 43,500 0.166 0.009 26,500

Sector × Year FE Y Y
Firm × Sector FE Y

Relationship between firm-level markups µit(s) and 6-digit market shares ωit(s) of firm i estimated separately for each 3-digit NAICS sector as shown. For each 3-digit sector
we report the slope coefficient b(s) from equation (59), standard error on the slope coefficient and number of observations. Two specifications are reported, one with sector ×
year FE only, the other with both sector × year and firm × sector FE. Standard errors clustered at the firm level.
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Table C4: Log-Linear Markups and Market Shares

Dependent Variable log µit(s)

logωit(s) 0.031 0.072
(0.000) (0.001)

Sector × Year FE Y Y
Firm FE Y

R2 0.098 0.647
Observations 609,000 369,000

Firm-level markups µit(s) constructed using data from the US Census of Manufactures from 1972 to 2012 as discussed in
Appendix B in the main text. Market shares ωit(s) of firm i within each 6-digit NAICS sector s. We include sector × year fixed
effects to control for sector-specific shifts in the Kimball demand index dt(s). Our benchmark specification also includes firm
fixed effects to contol for any time-invariant firm-specific component of demand. Standard errors clustered at the firm level.

Other distortions and a log-linear specification. Our model implies a non-linear re-

lationship between markups and market size

1

µit(s)
+ log

(
1− 1

µit(s)

)
= a(s) + ai(s) + at(s) + b(s) logωit(s)

This non-linear relationship makes it difficult to use fixed effects to absorb persistent firm-

or sector-level distortions that confound the measurement of markups in (60). To assess the

impact of such distortions, we take a log-linear approximation to the LHS to write

f(µ) :=
1

µ
+ log

(
1− 1

µ

)
≈ f(µ̄) + f ′(µ̄)µ̄(log µ− log µ̄) (C1)

where µ̄ ≥ 1 is the point of approximation, a nuisance parameter. Up to this approximation,

our model then implies that the true relationship between markups and market size is

f(µ̄) + f ′(µ̄)µ̄(log µit(s)− log µ̄) = a(s) + ai(s) + at(s) + b(s) logωit(s) (C2)

or

log µit(s) = ã+ ã(s) + ãi(s) + ãt(s) + b̃(s) logωit(s) (C3)

where b̃(s) = b(s)/(f ′(µ̄)µ̄) etc where f ′(µ̄)µ̄ = 1/(µ̄(µ̄− 1)).

To see the advantage of this log-linear specification, suppose we have measured markups

µ̂it(s) =
pit(s)yit(s)

Wtlit(s)
α̂lt(s) (C4)
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But suppose the measured markups µ̂it(s) confound the true markup µit(s) and a multiplica-

tive wedge

µ̂it(s) = µit(s) exp(τi(s) + τt(s)) (C5)

Then a regression of log measured markups on log market share is equivalent to

log µ̂it(s) = ã+ ã(s) + (ãi(s) + τi(s)) + (ãt(s) + τt(s)) + b̃(s) logωit(s) (C6)

So the persistent firm-level distortion τi(s) is absorbed by the firm fixed effects and the

persistent sector-time distortion τt(s) is absorbed by the sector-time fixed effects. In this

log-linear specification the slope coefficient b̃(s) no longer has a structural interpretation,

i.e., is not the super-elasticity, but is related to the super-elasticity via b̃(s) = µ̄(µ̄ − 1)b(s)

where µ̄ ≥ 1 is the approximation point.

We report the results from estimating this log-linear specification in Table C4. When we

impose a common slope coefficient b̃(s) = b̃ as in our benchmark model we find a tightly

estimated b̃ = 0.072 with standard error 0.001 clustered at the firm level. To intepret

this magnitude, if we set µ̄ = 1.2 then the implied super-elasticity is b = b̃/(µ̄(µ̄ − 1)) =

0.072/((1.2)(0.2)) = 0.3, somewhat higher than in our benchmark model. That said, this

implied value for the super-elasticity is almost exactly the same as the super-elasticity we

estimate by indirect inference in an extension of our model where a firm fixed effect is required

to control for permanent differences in quality across firms, see Appendix E below.

To summarize, even without imposing the additional structure from the Kimball demand

system, we see clearly that markups positively covary with market shares, both within firms

over time and across firms at a point in time. Another advantage of this log-linear specifica-

tion is that the elasticity αlt(s) is also absorbed by the sector-time effects. In this sense, this

exercise also serves to demonstrate that our results are not driven by the estimates of αlt(s)

used to construct µit(s).

Estimates based on Taiwanese product-level data. As a further robustness check,

we have also estimated the slope coefficient b using a rich product-level panel dataset from

Taiwanese manufacturing that we previously studied in Edmond, Midrigan and Xu (2015).

The Taiwanese data is more detailed than the US Census data and allows us to control for

any product-year specific effects. We again construct markups using labor input expenditure

shares as in (B10) and estimate the slope coefficient b in (59) in two ways. In the first

approach we exploit the cross-sectional variation of producers within a given product category

by including product-year fixed effects. This gives an estimate of b̂ = 0.15 that is tightly

estimated with a standard error of 0.002. In the second approach we exploit the panel

structure of the data and include a producer fixed effect, thus using the time-series co-

movement of a producer’s sales and their markups to estimate b. This gives an estimate of

b̂ = 0.16 with a standard error of 0.007, almost identical to our benchmark estimate b̂ = 0.162

from the US Census data.
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D Computational details

In this appendix we outline how we compute the steady state of the model and the transitional
dynamics.

D.1 Monopolistic competition

We first use our aggregation results to calculate the aggregate markup Mt and aggregate
productivity Zt. In our monopolistic competition model, sectors are identical and these are
time-invariant functions of the aggregate mass of producers Nt, say

Mt =M(Nt), and Zt = Z(Nt) (D1)

Calculating these objects requires solving for firm-level markups. To be concrete we illustrate
using our Kimball specification. For this specification we can write the problem of a firm
with productivity z as choosing relative output

q(z;A) = argmax
q≥0

[
Υ′(q)q − A

z
q
]

(D2)

where A > 0 is a scalar that summarizes the aggregate conditions faced by an individual
firm, including the overall amount of competition, as determined by the demand index D
and the unit cost of production Ω, as determined by the equilibrium wage and rental rate.
Solving this problem for an arbitrary A gives the relative quantity q(z;A), which satisfies the
complementary slackness condition[

Υ′(q(z;A))− µ(q(z;A))
A

z

]
q(z;A) = 0 (D3)

where µ(q) = σ(q)/(σ(q) − 1) is the markup of a firm of size q and where for our Kimball
specification σ(q) = σ̄q−ε/σ̄. The equilibrium value of A is then pinned down by satisfying
the Kimball aggregator

N

∫
Υ(q(z;A)) dG(z) = 1 (D4)

We then have A(N) for any arbitrary mass of producers N > 0. This mapping is time-
invariant because the distribution G(z) is time-invariant.

To implement this, we discretize G(z) using Gauss-Legendre quadrature with 5000 grid
points and obtain q(z;A) using a non-linear solver for each of these grid points. We then use
another non-linear solver to find the equilibrium A(N) that satisfies the Kimball aggregator.
With the optimal relative output q(z;A(N)) and markups µ(q(z;A(N)) in hand, we can cal-
culate the aggregate markupM(N) and aggregate productivity Z(N) using our aggregation
results

M(N) =


∫

1

µ(q(z;A(N)))
Υ′(q(z;A(N)))q(z;A(N)) dG(z)∫

Υ′(q(z;A(N)))q(z;A(N)) dG(z)


−1

(D5)
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and

Z(N) =

(
N

∫
q(z;A(N))

z
dG(z)

)−1

(D6)

We interpolate the functions M(N) and Z(N) using Chebyshev polynomials and solve
the resulting system of equations that characterize the steady state and transition dynamics
using the perfect foresight solver in Dynare. The advantage of the model with monopolistic
competition is that the free-entry condition can be written as

κWt = β

∞∑
j=1

(β(1− ϕ))j−1 Ct
Ct+j

(
1− 1

Mt+j

)
Yt+j
Nt+j

(D7)

and is therefore straightforward to evaluate alongside the other equilibrium conditions. We
use a similar approach to solve for the efficient allocations, replacing the decentralized equi-
librium conditions with the first-order conditions that characterize the planner’s allocations.

D.2 Oligopolistic competition

With oligopolistic competition, the distribution of productivity is no longer sector- and
time-invariant. Rather, each sector s is characterized by a productivity vector z(s) =
(z1(s), z2(s), . . . , zn(s)(s)) of the n(s) firms in that sector. Notice here that z(s) varies across
sectors both because the number of firms varies and because, with a finite number of firms,
the exact configuration of productivity draws also varies even for two sectors with the same
number of firms.

Let λ(z) denote the distribution of productivity vectors z across sectors. For a given
λ(z), we can solve for the aggregate markup and aggregate productivity by first calculating
the within-industry equilibrium for each z. For example, when firms compete in quantities,
we solve the following system of 2n(s) equations

µ(zi, s) =
1

1−
(

1
η
ω(zi, z) + 1

γ
(1− ω(zi, s))

) (D8)

ω(zi, s) =
µ(zi, s)

1−γ zγ−1
i∑n(s)

i=1
µ(zi, s)

1−γ zγ−1
i

(D9)

for each firm i = 1, 2, . . . , n(s) in each sector s. We can then use the resulting distribution
of markups and relative size within and across sectors and the aggregation results in the
main text to calculate the aggregate markup and aggregate productivity. Our assumption
that entry is random, not directed at individual sectors, allows us to write these aggregate
variables as functions of the average number of firms per sector, N =

∫ 1

0
n(s) ds, just as in

the model with monopolistic competition.
Now consider the free-entry condition. To evaluate this condition, we need to recognize

that a potential entrant understands that, because there are a finite number of firms, its entry
will change the equilibrium in the sector it enters. If an entrant is assigned to sector s with
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existing productivity distribution z(s) = (z1(s), z2(s), . . . , zn(s)(s)) the entrant understands
that the configuration of productivity will become

z′(s) = (z(s), z) (D10)

where z is the entrant’s productivity, independently drawn from G(z).
To implement this, we solve for the industry equilibrium for every sector and every possible

draw of z. In practice we have more than 300 firms per sector, it infeasible to use tensor-
based Gaussian quadrature to approximate the distribution λ(z) across sectors. Instead, we
use Monte-Carlo methods to approximate λ(z) across 100,000 sectors (we also verify that
our answers do not change when we increase the number of sectors further). We again use
Gauss-Legendre quadrature to approximate the univariate distribution G(z).

Let Π̂(N) denote a firm’s expected profits per period (scaled by aggregate output) from
entering and drawing productivity z from G(z) and being assigned to a random sector s with
initial productivity configuration z(s), that is

Π̂(N) =

∫ (∫ 1

0

(
1− 1

µ(z, (z(s), z))

)
ω(z, (z(s), z)) ω̄(z(s), z) ds

)
dG(z) (D11)

where µ(z, (z(s), z)) and ω(z, (z(s), z)) denote the markup and market share of an individual
firm with productivity z in a sector with productivity configuration z′(s) = (z(s), z) and
where ω̄(z(s), z) denotes the associated market share of sector s to which the firm is assigned.
Because firms are randomly assigned, these expected profits depend only on the average
number of firms N , not the entire productivity distribution.

The free-entry condition can then be written as

κWt ≥ β
Ct
Ct+1

Qt+1 (D12)

where

Qt = Π̂(Nt)Yt + β(1− ϕ)
Ct
Ct+1

Qt+1 (D13)

As with the monopolistic competition case, we use Chebyshev polynomials to approximate
the time-invariant functions Π̂(N), M(N) and Z(N), which then allows us to use standard
methods to characterize the equilibrium transition dynamics.

Computing the function Π̂(N) is the key step and is extremely time consuming, because
doing so requires resolving the industry equilibrium for every sector the firm may be assigned
to for every possible realization of its own productivity draw. But this step only has to be
done once. Our assumption that entry is random is key to making even this feasible. If
instead firms can direct their entry to individual sectors, one can no longer interchange the
order of integration used to calculate Π̂(N) from (D11) and we would need to characterize
the equilibrium law of motion for the vector zt+1(s) given the current vector zt(s) and the
individual entry decisions, as well as how a firm’s profits vary with both its own and its
competitors’ productivity, π(z, (zt(s), z)), in order to compute the expected present value
of profits from entering a sector with a given vector of zt(s) of incumbents’ productivities.
Because these are very high-dimensional objects, computing this alternative model would
require resorting to a dimensionality-reduction approximation in the spirit of Krusell and
Smith (1998).
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E Monopolistic competition extensions

In this appendix we consider two variations on our benchmark model: (i) where we retain

Kimball demand but where firm heterogeneity arises from differences in quality (demand

shifters) rather than differences in productivity, and (ii) where we replace Kimball demand

with symmetric translog demand. For both these variations we retain the assumption of

monopolistic competition.

E.1 Heterogeneity in quality

In our benchmark model, markups are pinned down entirely by market shares. We now

consider an extension where differences in quality imply differences in demand schedules

across firms, breaking the tight link between markups and market shares in our benchmark.

Setup. Let z ∼ G(z) denote the quality of a firm’s product and write the Kimball aggregator

Nt

∫
zΥ
(yt(z)

Yt

)
dG(z) = 1 (E1)

This implies the inverse demand curve

pt(z) = zΥ′(qt(z))Dt (E2)

where as before qt(z) = yt(z)/Yt denotes a firm’s relative size and Dt denotes the Kimball

demand index, now given by

Dt =

(
Nt

∫
zΥ′(qt(z))qt(z) dG(z)

)−1

(E3)

Firms have the same technology as in our benchmark model except that now all firms have

the same productivity which we normalize to 1. Thus all firms have marginal cost Ωt given

by the same index of factor prices (14) and we can write the static markup condition

zΥ′(qt(z)) =
σ(qt(z))

σ(qt(z))− 1
At, At :=

Ωt

Dt

(E4)

where as before σ(q) = σ̄q−ε/σ̄ denotes the demand elasticity of a firm of size q. Conditional

on a given At this static markup condition pins down the cross-sectional distribution of

relative size qt(z) and hence markups µt(z) = µ(qt(z)), just as in the benchmark model.

Relationship between markups and market shares. Where the quality interpretation

substantively changes the analysis is in the implied relationship between markups and market

shares used in our calibration strategy. In particular, market shares ωt(z) := pt(z)qt(z) are

now given by ωt(z) ∼ zΥ′(qt(z))qt(z) and so depend not just on qt(z) as in our benchmark but

9



also on quality z. Eliminating qt(z) to write the relationship between markups and market

shares now gives

1

µt(z)
+ log

(
1− 1

µt(z)

)
= a + b logωt(z) − b log z, b =

ε

σ̄
(E5)

Unlike our benchmark model, cross-sectional variation in market shares is no longer a suffi-

cient statistic for the effect of variation in z. In our benchmark, we interpreted the estimated

b̂ as a direct estimate of ε/σ̄. But in this extension, since the market share is negatively

correlated with the empirically unobserved quality z, the linear regression coefficient is no

longer a consistent estimate of ε/σ̄. In recalibrating the model, we use indirect inference

to pin down ε/σ̄, increasing the value of ε/σ̄ until the coefficient in the model b equals its

counterpart in the data, b̂ = 0.162, jointly with our other calibration targets.

Calibration. Table E1 reports the parameters for the quality model when we target an

aggregate markup of M = 1.15. The quality model fits the data as well as our benchmark.

The most important difference is that the super-elasticity needs to be substantially higher

than in our benchmark, ε/σ̄ = 0.304 as opposed to 0.162. With ε/σ̄ = 0.304 the regression

coefficient b in the quality model matches its counterpart b̂ in the data. This value of the

super-elasticity is almost exactly the same as we infer in a log-linear approximation to (59)

where we can use firm fixed effects to control for persistent quality differences, see Appendix C

above.

Results. Given the substantially higher super-elasticity, ε/σ̄ = 0.304, for a given aggregate

markup M the quality model implies more markup dispersion, especially in the upper tail.

This leads to larger losses from misallocation, as shown in Table E2. For the quality model

calibrated to an aggregate markup of M = 1.15 the aggregate productivity losses due to

misallocation are 1.75%, as opposed to 0.97% for our benchmark model with M = 1.15.

Because of the larger amount of misallocation in the initial distorted steady state, the total

welfare costs are larger than in our benchmark and the gains from size-dependent policies

that eliminate misallocation and the entry distortion are both larger in absolute terms and

larger as a share of the total than in our benchmark. That said, as reported in Table E3, we

continue to find that a uniform output subsidy alone can go more than half way to achieving

full efficiency. As in our benchmark, the gains from the optimal entry subsidy are still an

order of magnitude smaller than the gains from other policies.

Discussion. In the quality specification used here a firm’s product does not directly affect

the firm’s production function. By contrast, in the literature it is standard to assume that

higher-quality firms need higher-quality inputs in production, e.g., as in Fieler, Eslava and

Xu (2018), Jaimovich, Rebelo and Wong (2019), and Verhoogen (2008). To the extent that

quality affects production in a Hicks-neutral way, this is without loss of generality. For

10



Table E1: Parameterization, Extensions

calibration targets data quality translog benchmark

M aggregate markup 1.1 ∼ 1.4 1.15 1.15 1.15
top 5% sales share 0.57 0.57 0.21 0.57
materials share 0.45 0.45 0.45 0.45

b̂ regression coefficient 0.16 0.16 0.43 0.16

parameter values

ξ Pareto tail 7.69 6.67 6.84
σ̄ demand elasticity 12.60 20∗ 10.86
ε/σ̄ super-elasticity 0.30 – 0.16
φ weight on value-added 0.42 0.44 0.43

The calibrated parameters for our monopolistic competition extensions. For our quality model with Kimball demand we calibrate
the Pareto tail ξ, demand elasticity σ̄, super-elasticity ε/σ̄ and weight on value-added φ to match the targets shown, the same
as for our benchmark model but here for brevity we focus on the case M = 1.15. Our translog model has effectively one less
parameter and so fits the data less well, see text for more details. All other parameters are assigned as in Panel A of Table 1 in
the main text.

Table E2: Markup Dispersion and Productivity Losses, Extensions

quality translog benchmark

cost-weighted distribution of markups

aggregate markup, M 1.15 1.15 1.15

p25 markup 1.09 1.07 1.11
p50 markup 1.13 1.12 1.14
p75 markup 1.19 1.20 1.18
p90 markup 1.26 1.30 1.23
p99 markup 1.43 1.53 1.35

aggregate productivity losses, %

gross output 1.75 2.81 0.97
value-added 4.20 6.16 2.71
value-added, M = 1 3.35 5.33 1.85

Cost-weighted steady state distribution of markups and aggregate productivity losses for various monopolistic competition
models. For brevity we focus on the caseM = 1.15. Gross output aggregate productivity loss is (Z−Z∗)/Z∗×100, and similarly
for the value-added aggregate productivity loss. To isolate the effect of misallocation on value-added aggregate productivity
we also report the value-added aggregate productivity loss with the same amount of markup dispersion but holding M = 1 to
eliminate the distortion between value-added and materials, see text for details.
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Table E3: Implications of Alternative Policies, Extensions

steady state comparisons, %

Y C L N K Z welfare, %

quality

efficient 68.4 54.3 19.1 30.7 114.0 6.8 11.55
uniform subsidy 52.4 36.8 16.9 10.6 89.2 1.9 6.44
size-dependent subsidy 10.8 12.8 2.0 16.9 13.5 4.7 5.58
entry subsidy 10.3 12.3 3.6 31.1 13.2 5.0 1.22

translog

efficient 61.6 46.4 16.8 8.6 103.1 4.2 13.43
uniform subsidy 51.3 35.4 17.0 9.9 87.9 1.4 5.67
size-dependent subsidy 7.5 8.6 0.1 −1.1 9.0 2.7 7.47
entry subsidy 2.7 3.2 1.1 9.5 3.4 1.4 0.14

benchmark, M = 1.15

efficient 59.6 44.5 18.0 20.1 100.4 4.1 8.67
uniform subsidy 51.8 35.8 17.0 9.5 88.5 1.5 5.90
size-dependent subsidy 5.3 6.2 1.0 8.3 6.6 2.3 2.87
entry subsidy 6.3 7.4 2.4 20.0 8.1 3.0 0.56

The first six columns report the percentage change from the initial distorted steady state with M = 1.15 to the new steady
state. The last column reports the consumption equivalent welfare gains (including transitional dynamics). The alternative
policies are (i): the efficient allocation, where all markups are removed, (ii) a uniform subsidy that eliminates the aggregate
markup, (iii) size-dependent subsidies that eliminate misallocation and the entry distortion, and (iv) the optimal entry subsidy.

example, if firms with quality z have production function y = a(z)F (k, l, x) we can rescale

quality z̃ := z/a(z) and use (E4) to solve for relative size qt(z̃) and hence markups µt(z̃) in

terms of the rescaled quality z̃. But if quality affects production through the use of specialized

capital, labor or materials in a factor-biased (non-Hicks-neutral) way, there would be genuine

interactions between a firm’s pricing decisions and input choice that make the model more

complex. Our results focus on the simple Hicks-neutral setup which is suficient for our

purposes, i.e., demonstrating the effects of breaking the one-to-one link between size and

markups.

E.2 Translog demand

We now consider a version of our model where we replace Kimball demand with symmetric

translog demand as in Feenstra (2003). For this version of the model we revert to our

12



benchmark setting where firm heterogeneity arises from differences in productivity.

Setup. Let the technology for final good producers be given by a symmetric translog ex-

penditure (cost) function which we write

log(PtYt) = log Yt +
1

2σ̄Nt

+

∫
log pt(z) dG(z)

+
σ̄Nt

2

((∫
log pt(z) dG(z)

)2

−
∫

log pt(z) 2 dG(z)

)
(E6)

From Shephard’s lemma, the market share ωt(z) of a firm with productivity z is given by

ωt(z) :=
pt(z)yt(z)

PtYt
=
d log(PtYt)

d log pt(z)
= σ̄ log

( p∗t
pt(z)

)
, pt(z) < p∗t (E7)

where any price pt(z) larger than the choke price p∗t given by

log p∗t :=
1

2σ̄Nt

+

∫
log pt(z) dG(z) (E8)

will lead to zero sales. We can then write the residual demand curve

yt(z) = σ̄ log
( p∗t
pt(z)

) PtYt
pt(z)

, pt(z) < p∗t (E9)

Let ρt(z) := pt(z)/p∗t denote a firm’s relative price and let ω(ρ) = σ̄ log(1/ρ) denote the

market share and y(ρ) ∼ ω(ρ)/ρ the residual demand for a firm with relative price ρ ≤ 1.

Let σ(ρ) and µ(ρ) denote the associated demand elasticity and markup. These are given by

σ(ρ) =
1 + log

(
1
ρ

)
log
(

1
ρ

) , µ(ρ) = 1 + log
(1

ρ

)
(E10)

We can then write the static markup-pricing condition

ρt(z) =
σ(ρt(z))

σ(ρt(z))− 1

z∗t
z
, z∗t :=

Ωt

p∗t
(E11)

where z∗t is the cutoff productivity such that p∗t = Ωt/z
∗
t , i.e., the cutoff firm with productivity

z∗t has price equal to its marginal cost Ωt/z
∗
t . Conditional on z∗t this static markup condition

pins down the cross-sectional distribution of relative prices ρt(z) and hence markups µt(z) =

µ(ρt(z)), just as in the benchmark model.

Markups and market shares. This translog specification implies a linear relationship

between markups and market shares. From (E10) we can write

µt(z) = 1 +
1

σ̄
ωt(z) (E12)

As in our benchmark model, firms with higher market shares have higher markups. With

translog demand, the strength of this relationship is governed by 1/σ̄.

13



Markups. Inverting µ(ρ) to write ρ(µ) = e1−µ we can write the static markup condition

µ+ log µ = 1 + log
( z
z∗t

)
, z > z∗t (E13)

which implicitly determines the markup µt(z), strictly increasing in z. Notice that the

productivity cutoff z∗t is the only aggregate variable that matters for the cross-sectional

distribution of markups — and hence the only aggregate variable that matters for the the

cross-sectional distributions of market shares ωt(z) and relative prices ρt(z).

Calibration. As is clear from our analytic expressions for z∗t and Mt in the main text,

the translog model is less flexible than our Kimball benchmark. In particular, whenever

there are positive selection effects, z∗t > 1, the Pareto tail ξ is pinned down by our target

for the aggregate markup M = 1 + 1/ξ. Moreover the parameter σ̄ always enters in the

form σ̄N and so is not separately identified.1 In this sense, the translog model only has two

key parameters to work with, not the three parameters of our Kimball benchmark. Given

this, it is not surprising that the translog model does less well in reproducing our calibration

targets. The translog model cannot simultaneously hit our aggregate markup target, sales

concentration target, and regression coefficient b̂. As reported in Table E1, the translog model

reproduces an aggregate markup of M = 1.15 but implies too little sales concentration (a

top 5% sales share of 0.21, as opposed to 0.57 in the data) and too strong a relationship

between markups and market shares (regression coefficient b = 0.43 as opposed to b̂ = 0.16

in the data).

Results. As with the quality differences model, the translog model implies considerably

more markup dispersion, especially in the upper tail. This again leads to larger losses from

misallocation relative to our benchmark model, as shown in Table E2. For our translog

model calibrated to an aggregate markup ofM = 1.15 the aggregate productivity losses due

to misallocation are 2.81%, as opposed to 0.97% for our benchmark model with M = 1.15.

Because of the larger amount of misallocation in the initial distorted steady state, the total

welfare costs are larger than in our benchmark and the gains from size-dependent policies

that eliminate misallocation and the entry distortion are both larger in absolute terms and

larger as a share of the total than in our benchmark. Indeed, as shown in Table E3, this effect

is even stronger than in the quality model so now we find that the size-dependent policies

have a larger effect than the uniform output subsidy. Again we find that the gains from the

optimal entry subsidy are much, much smaller than the gains from other policies.

1Recall that we choose the sunk entry cost κ to normalize N = 1 in the initial distorted steady state.
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F Aggregate markup analytics

In this appendix we characterize analytically the time-invariant functionM(N) mapping the

mass of firms into the aggregate markup for our two monopolistic competition specifications:

(i) Kimball demand, and (ii) symmetric translog demand. This time invariant function,

along with its counterpart for aggregate productivity Z(N), plays a crucial role in solving

our model.

The results below are in the spirit of results in Arkolakis, Costinot, Donaldson and

Rodŕıguez-Clare (2019), but unlike in their analysis, we do not assume from the outset that

the choke price in either demand system is binding, since this is an equilibrium outcome. In

addition, for the translog case we provide a closed-form solution for the aggregate markup

that may be of some independent interest.

F.1 Kimball demand

First observe that a firm’s employment is proportional to its relative size scaled by produc-

tivity, l(z) ∼ q(z)/z, so we can write the aggregate markup as the cost-weighted average

M =

∫ ∞
1

µ(q(z))
q(z)

z
dG(z)∫ ∞

1

q(z)

z
dG(z)

(F1)

With Kimball demand, a firm’s relative size q(z) is pinned down by the static markup pricing

condition

Υ′(q) = µ(q)
A

z
(F2)

where A > 0 is an endogenous aggregate variable that depends on the demand index and the

unit costs of production. Hence a firm’s optimal size q(z;A) is a function only of the ratio

z/A and we can write q(z/A). Plugging this back into the Kimball aggregator gives

N

∫ ∞
1

Υ(q(z/A)) dG(z) = 1 (F3)

This implicitly determines A(N). Since q(z/A) is increasing in z/A for each z, from the

implicit function theorem we obtain that A′(N) > 0, i.e., that a larger mass of firms N

makes the market more competitive and shrinks the relative size of each firm q(z/A(N)).

We can then use a change of variables ẑ = z/A and the assumption that G(z) is Pareto

to write the aggregate markup as a function of N via A(N), namely

M(N) =

∫ ∞
1/A(N)

µ(q(ẑ))
q(ẑ)

ẑ
dG(ẑ)∫ ∞

1/A(N)

q(ẑ)

ẑ
dG(ẑ)

(F4)
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Hence changes in the number of competitors, summarized by changes in A(N), only change

the aggregate markup through their effect on the markups of the smallest firms. A direct

calculation then gives

M′(N) = (µmin −M)× qmin gmin∫ ∞
1/A(N)

q(ẑ)

ẑ
dG(ẑ)

× A′(N)

A(N)
≤ 0 (F5)

where µmin = µ(1/A) and qmin = q(1/A) are shorthand for the markups and relative size of

the smallest type of firm, which has density in the population gmin = g(1/A). A larger mass

of firms N makes the market more competitive, increasing A(N), and since the markups of

the smallest firms are smaller than the markup of the average, µmin ≤ M, the aggregate

markup falls.

Cutoff productivity z∗(N). This derivation implicitly assumes that all firms have interior

solutions to Υ′(q) = µ(q)A(N)/z pinning down their relative size. But if A(N) is sufficiently

large, i.e., if N is sufficiently large, then firms with low productivity are at a corner solution

and produce nothing. In particular, there is a cutoff productivity z∗ satisfying Υ′(0) =

A(N)/z∗ such that all firms with z ≤ z∗ have relative size q = 0. Since G(z) is bounded

below by 1 and Υ′(0) = (σ̄ − 1)e1/ε/σ̄ from (57), we can write this cutoff

z∗(N) = max
[

1 ,
σ̄

σ̄ − 1
e−

1
ε A(N)

]
(F6)

where A(N) solves the Kimball aggregator (F3) and is strictly increasing in N . In short if

the mass of firms N is sufficiently small, then z∗ = 1 and there are no selection effects. But

if N is sufficiently large, then z∗ > 1 and there are positive selection effects which become

stronger the larger is N .

Now observe that if z∗ = 1, then qmin > 0 so that, from (F5), for sufficiently small N the

aggregate markup M(N) is strictly decreasing in N . But if z∗ > 1, i.e., the choke price is

binding, then qmin = 0 and the aggregate markup M(N) is invariant to N . In other words,

for small N , increases in N are absorbed by a decline in the aggregate markup with no change

in selectivity, but for larger N , increases in N are absorbed by an increase in selectivity with

no further change in the aggregate markup. This latter case echoes Arkolakis, Costinot,

Donaldson and Rodŕıguez-Clare (2019), but here we see that whether or not the choke price

is binding is determined by A(N), which then varies over time as the mass of firm evolves.

In our benchmark calibration of the Kimball model, there are no selection effects, z∗ = 1,

but the smallest firms of size qmin are tiny so the effects of changes in N on the aggregate

markup are likewise tiny.
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Aggregate productivity Z(N). Similarly, aggregate productivity Z(N) is a time-invariant

function of the mass of firms. Following the same steps as for the aggregate markup, we can

write

Z(N) =

(
NA(N)−ξ−1

∫ ∞
1/A(N)

q(ẑ)

ẑ
dG(ẑ)

)−1

(F7)

which likewise determines Z(N) given the A(N) which solves the Kimball aggregator (F3).

F.2 Translog demand

Symmetric translog demand is sufficiently tractable that we can obtain a closed form solution

forM(N). The qualitative properties are essentially the same as for the Kimball specification.

Cutoff productivity z∗(N). We first characterize the cutoff productivity z∗ as a function

of the mass of firms N . With symmetric translog demand, firm-level markups µ(z) implicitly

solve

µ+ log µ = 1 + log(z/z∗), z > z∗ (F8)

with µ(z) = 1 for all z ≤ z∗ where z∗ is the cutoff productivity dual to the choke price

log p∗ =
1

σ̄N
+

∫
log p(z) dG(z) (F9)

Using p∗z∗ = Ω and p(z) = µ(z)Ω/z we can rewrite the choke price as a condition on the

cutoff productivity

(1−G(z∗)) log z∗ = −
( 1

σ̄N
+

∫ ∞
z∗

log
(µ(z)

z

)
dG(z)

)
(F10)

To simplify this we need to calculate the integral on the RHS. Using (F8) to rewrite the

integrand, we get∫ ∞
z∗

log
(µ(z)

z

)
dG(z) =

∫ ∞
z∗

(
1− µ(z)− log z∗

)
dG(z)

=
(
1− ln z∗

)
(1−G(z∗))−

∫ ∞
z∗

µ(z) g(z) dz

=
(
1− ln z∗

)
(1−G(z∗))−

∫ ∞
1

µ g(z(µ))z′(µ) dµ

=
(
1− ln z∗

)
(1−G(z∗))− ξ

∫ ∞
1

(1 + µ)
{
z∗µeµ−1

}−ξ
dµ

=
(
1− ln z∗

)
(1−G(z∗))− (1−G(z∗))ξ

∫ ∞
1

(1 + µ)µ−ξ e−ξ(µ−1) dµ

(F11)

where the third line changes the variable of integration from z to µ using µ(z∗) = 1 and we

then use the inverse z(µ) = z∗µeµ−1 implied by (F8) and its derivative z′(µ) and the Pareto

17



density g(z) = ξz−ξ−1 recognizing that z∗−ξ = 1 − G(z∗). Substituting this formula for the

integral back into (F10), cancelling common terms and simplifying then gives

1

1−G(z∗)
= z∗ ξ = σ̄N(I(ξ)− 1) (F12)

where I(ξ) is the constant

I(ξ) := ξ

∫ ∞
1

(1 + µ)µ−ξ e−ξ(µ−1) dµ (F13)

which depends only on the Pareto tail ξ. To simplify this further, note that we can write

I(ξ) in terms of the generalized exponential integral

I(ξ) = 1 + eξEξ(ξ), En(x) :=

∫ ∞
1

e−xt

tn
dt (F14)

Since the distribution G(z) is bounded below by 1, our solution for the cutoff productivity is

z∗(N) = max
[

1 , σ̄N eξEξ(ξ)
]1/ξ

(F15)

As with the Kimball specification, if the mass of firms N is sufficiently small, then z∗ = 1

and there are no selection effects. But if N is sufficiently large, then z∗ > 1 and there are

positive selection effects which become stronger the larger is N .

Aggregate markupM(N). For the translog case, begin by writing the aggregate markup

as the sales-weighted harmonic average and use the translog’s linear relationship between

markups and market shares

M−1 = N

∫ ∞
1

ω(z)

µ(z)
dG(z) = σ̄N

∫ ∞
1

µ(z)− 1

µ(z)
dG(z) = σ̄N

∫ ∞
z∗

µ(z)− 1

µ(z)
dG(z) (F16)

Changing variables from z to µ and following the same steps as in the derivation of the cutoff

z∗ gives

M−1 = σ̄N(1−G(z∗))

{
1− ξ

∫ ∞
1

(1 + µ)µ−2−ξ e−ξ(µ−1) dµ

}
(F17)

which we can again write in terms of generalized exponential integrals

M−1 = σ̄N(1−G(z∗))
(

1− ξeξ[Eξ+1(ξ) + Eξ+2(ξ)]
)

(F18)

Since we know z∗(N), this implicitly gives M(N) too.

But we can say more than this. To simplify further, we consider the cases z∗ > 1 and

z∗ = 1 in turn. To take the first case, if N is sufficiently high, such that z∗ > 1, then from
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(F12) and (F14) we have 1 = σ̄N(1− G(z∗)) eξEξ(ξ) so we can eliminate the multiplicative

term σ̄N(1−G(z∗)) to get

M =
eξEξ(ξ)

1− ξeξ[Eξ+1(ξ) + Eξ+2(ξ)]
(F19)

This is a constant, independent of N . Although it looks complicated, it simplifies nicely.

To do so, we first rewrite the exponential integrals in terms of upper incomplete gamma

functions, using the standard result

En(x) = xn−1Γ(1− n, x), Γ(s, x) :=

∫ ∞
x

ts−1e−t dt (F20)

and then use the standard recursion formula for upper incomplete gamma functions

Γ(s+ 1, x) = sΓ(s, x) + xse−x (F21)

Using these properties to collect terms and simplify

M =
eξEξ(ξ)

1− ξeξ[Eξ+1(ξ) + Eξ+2(ξ)]
=

eξξξ−1Γ(1− ξ, ξ)
eξξξ+1Γ

(
− (1 + ξ), ξ

) = ξ−2 Γ
(

+ 1− ξ, ξ
)

Γ
(
− 1− ξ, ξ

) (F22)

Now note that the ratio of gamma functions on the RHS is of the form

Γ(s+ 2, x)

Γ(s, x)
= s(s+ 1) + (s+ 1 + x)

xse−x

Γ(s, x)
(F23)

which follows from iterating forward twice using our recursion (F21). Evaluating this at

s = −(1 + ξ) and x = ξ and simplifying

Γ(+1− ξ, ξ)
Γ(−1− ξ, ξ)

= −(1 + ξ)[−(1 + ξ) + 1] + [−(1 + ξ) + (1 + ξ)]
ξ−(1+ξ)e−ξ

Γ(−(1 + ξ), ξ)
= ξ(1 + ξ) (F24)

Hence we get the very simple expression for the aggregate markup

M = 1 +
1

ξ
, if z∗ > 1 (F25)

To take the second case, if instead z∗ = 1, so that G(z∗) = 0, then from (F18), (F22) and

(F24) we have

M =
(

1 +
1

ξ

)
×
(
σ̄N eξEξ(ξ)

)−1

, if z∗ = 1 (F26)

Collecting these cases together, we conclude that

M(N) =
(

1 +
1

ξ

)
×
(

max
[

1 , σ̄N eξEξ(ξ)
])−1

(F27)

since z∗ = 1 if σ̄N eξEξ(ξ) ≤ 1 and z∗ > 1 otherwise.
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Qualitatively, this is essentially the same as with the Kimball specification. For sufficiently

small N the aggregate markup M(N) is strictly decreasing in N . But if z∗ > 1, i.e., the

choke price is binding, the aggregate markupM(N) = 1+1/ξ is invariant to N and depends

only on the amount of productivity dispersion 1/ξ. Just as with the Kimball specification, for

small N , increases in N are absorbed by a decline in the aggregate markup with no change

in selectivity, but for larger N , increases in N are absorbed by an increase in selectivity with

no further change in the aggregate markup.
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G Value-added productivity

In this appendix we derive value-added aggregate productivity in our model. To begin with,

recall that aggregate value added is given by

GDP = Y −X (G1)

And recall that we can write the aggregate production function for gross output

Y = Z

[
φ

1
θ

(
KαL̃1−α

) θ−1
θ

+ (1− φ)
1
θX

θ−1
θ

] θ
θ−1

(G2)

G.1 Planner’s value-added aggregate productivity

To calculate the amount the planner can produce with given K and L̃, we choose materials

X∗ to maximize

GDP∗ = Z∗
[
φ

1
θ

(
KαL̃1−α

) θ−1
θ

+ (1− φ)
1
θX∗

θ−1
θ

] θ
θ−1

−X∗ (G3)

The first order condition for this problem is

(1− φ)
1
θ Z∗

[
φ

1
θ

(
KαL̃1−α

) θ−1
θ

+ (1− φ)
1
θX∗

θ−1
θ

] 1
θ−1

(X∗)−
1
θ = 1 (G4)

or equivalently

X∗ = (1− φ) (Z∗)θ−1 Y ∗ (G5)

We can then eliminate materials X∗ from the objective to get

Y ∗ = Z∗
[
φ

1
θ

(
KαL̃1−α

) θ−1
θ

+ (1− φ)
(

(Z∗)θ−1 Y ∗
) θ−1

θ

] θ
θ−1

(G6)

which implicitly determines the planner’s gross output Y ∗ in terms of the given K and L̃ and

their gross output productivity Z∗. Solving for the planner’s gross output Y ∗ we get

Y ∗ = φ
1
θ−1

Z∗(
1− (1− φ) (Z∗)(θ−1)

) θ
θ−1

(
KαL̃1−α

)
(G7)

which implies that the planner’s aggregate value-added is

GDP∗ = Y ∗ −X∗ =
(

1− (1− φ) (Z∗)θ−1
)
Y ∗

= φ
1
θ−1

(
1− (1− φ) (Z∗)θ−1

)
(

1− (1− φ) (Z∗)θ−1
) θ
θ−1

× Z∗
(
KαL̃1−α

)
(G8)

So the planner’s value-added aggregate productivity is

Z∗value-added = φ
1
θ−1

(
1− (1− φ)Z∗ θ−1

)
(1− (1− φ)Z∗ θ−1)

θ
θ−1

Z∗ (G9)
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G.2 Decentralized value-added aggregate productivity

For the decentralized economy, aggregate value-added is given by

GDP = Y −X =

(
1− (1− φ)

(
1

Ω

)1−θ
1

M

)
Y (G10)

Moreover we know that Ω = Z/M so we can write materials

X = (1− φ)

(
Z

M

)θ−1
Y

M
= (1− φ)Zθ−1M−θY (G11)

Using this to eliminate materials X from the aggregate production function for gross output

(G2) we have

Y
θ−1
θ =

[
φ

1
θ

(
ZKαL̃1−α

) θ−1
θ

+ (1− φ)Zθ−1M1−θY
θ−1
θ

]
(G12)

Solving for gross output Y we get

Y = φ
1
θ−1

Z

(1− (1− φ)Zθ−1M1−θ)
θ
θ−1

KαL̃1−α (G13)

which implies that aggregate value-added in the decentralized economy is

GDP =
(
1− (1− φ)Zθ−1M−θ)Y = φ

1
θ−1

(
1− (1− φ)Zθ−1M−θ)

(1− (1− φ)θ−1M1−θ)
θ
θ−1

× ZKαL̃1−α (G14)

So value-added aggregate productivity in the decentralized economy is

Zvalue-added = φ
1
θ−1

(
1− (1− φ)Zθ−1M−θ)

(1− (1− φ)Zθ−1M1−θ)
θ
θ−1

Z (G15)

Comparing the levels of value-added aggregate productivity in the decentralized economy to

its counterpart from the planner’s problem, we see that value-added aggregate productivity

is distorted both because markup dispersion makes Z too low relative to the planner’s Z∗

and because the aggregate markup M leads to an inefficient use of materials.
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H Static welfare calculation

In this appendix we derive a simple formula for the welfare losses from markups in a steady

state version of our model. Suppose that the representative consumer has preferences

U(C,L) =
C1−σ

1− σ
− L1+ν

1 + ν
(H1)

Suppose also that labor is the only factor of production2 and that there is a representative

firm with production function Y = ZL. Markups distort allocations by reducing aggregate

productivity Z and by introducing a wedge M between the wage and marginal product of

labor, W = Z/M. Labor supply is given by CσLν = W = Z/M. Using goods market

clearing C = Y = ZL, employment and consumption in the distorted allocation are given by

L =M− 1
σ+ν Z

1−σ
σ+ν , and C =M− 1

σ+ν Z
1+ν
σ+ν (H2)

The associated level of utility is

U(C,L) =

(
1

1− σ
− 1

1 + ν

1

M

)
M− 1−σ

σ+ν Z
(1+ν)(1−σ)

σ+ν (H3)

Similarly, the level of utility in the efficient allocation is

U(C∗, L∗) =

(
1

1− σ
− 1

1 + ν

)
Z∗

(1+ν)(1−σ)
σ+ν (H4)

Let W denote the level of consumption solving U(W , 0) = U(C,L) for the distorted alloca-

tion, namely

W =

(
1− 1− σ

1 + ν

1

M

) 1
1−σ

M− 1
σ+ν Z

1+ν
σ+ν (H5)

Similarly, let W∗ denote the level of consumption solving U(W∗, 0) = U(C∗, L∗) for the

efficient allocation

W∗ =

(
1− 1− σ

1 + ν

) 1
1−σ

Z∗
1+ν
σ+ν (H6)

Hence the consumption-equivalent losses from markups can be written

W
W∗

=


(

1− 1− σ
1 + ν

1

M

)
(

1− 1− σ
1 + ν

)


1
1−σ (

Z

Z∗

) 1+ν
σ+ν

M− 1
σ+ν (H7)

With logarithmic utility, σ → 1, as in the main text, this simplifies to

W
W∗

=

(
Z

Z∗

)
M− 1

1+ν (H8)

To illustrate, if misallocation reduces aggregate productivity to Z/Z∗ = 0.99 and the aggre-

gate markup is M = 1.15 with ν = 1 as in our benchmark model, then this static formula

implies W/W∗ = 0.9232, a welfare loss of −7.68% in consumption-equivalent terms.
2A steady-state calculation including capital would overstate the costs of markups because it would ignore

the deferred consumption required to build up the efficient capital stock.
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I Love for variety

Our model with variable markups has a ‘love for variety’ effect, an increase in N increases

aggregate productivity Z(N) because of the concavity of the technology in each individual

variety, as in a CES model. In a CES model with identical firms and demand elasticity σ̄ > 1

we would have Z(N) = N
1

σ̄−1 , log-linear in N .

To assess the variety effect in our benchmark model, we modify the Kimball aggregator to

N1+κ
∫ ∞

1

Υ(q(z)) dG(z) = 1 (I1)

where κ parameterizes the strength of the variety effect. If κ = 0, we have our benchmark

model. If κ < 0, there is a weaker variety effect, if κ > 0 there is a stronger variety effect.

Figure I1 plots logZ as a function of logN for a weaker variety effect, κ = −0.1 and a

stronger variety effect κ = +0.1. To interpret these parameter values, recall that in the CES

special case, Υ(q) = q
σ̄−1
σ̄ we would remove the variety effect altogether by setting κ = −1/σ̄.

In the CES case, this would make Z(N) invariant to N . For our benchmark model calibrated

toM = 1.15 we have σ̄ = 10.86, this would require κ = −0.0921, say −0.1 in round numbers.

Figure I1 shows that κ = −0.1 significantly reduces the variety effect but does not eliminate

it entirely. With variable markups, and hence a higher profit share, it takes a more negative

κ to eliminate the variety effect. In particular, we need a value of κ consistent with the

calibrated profit share, something like κ ≈ −(M− 1)/M = −0.13.

Table I1 reports the welfare costs of markups under various alternative policy scenarios

for κ = −0.1 and κ = +0.1. With κ = −0.1 the planner wants many fewer varieties,

but with κ = +0.1 the planner wants many more varieties. Notice that regardless of the

sign of κ, the welfare costs are larger than in our benchmark model. This reflects the

additional inefficiency due to entry externalities in the market equilibrium. The value of κ
does not affect the amount of misallocation, which remains 0.97% of gross output TFP, as in

our benchmark model with M = 1.15. Nonetheless, the welfare gains from size-dependent

subsidies are considerably larger. This is because the size-dependent subsidies correct both

misallocation and the entry distortion and the entry distortion here is larger than in our

benchmark. Although these channels are not perfectly additive, by comparing the gains

from the full set of size-dependent subsidies to the gains from the optimal uniform entry

subsidy, one can see that the welfare gains from correcting the misallocation distortion are

between 2 and 3% in all cases — larger than than the gross output TFP loss because of the

standard multiplier effect from intermediates.
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Figure I1: Love For Variety Effects
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Aggregate productivity logZ as a function of the mass of varieties logN . The parameter κ controls the strength of the variety
effect: κ = 0 is our benchmark model, κ = −0.1 has a much weaker variety effect, κ = +0.1 has a much stronger variety effect.
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Table I1: Implications of Alternative Policies, Variety Effects

steady state comparisons, %

Y C L N K Z welfare, %

κ = −0.1 efficient 42.4 24.4 9.4 -66.9 72.4 -3.7 17.48
uniform subsidy 47.9 31.8 17.0 10.0 82.9 0.4 3.70
size-dependent subsidy -3.9 -5.5 -7.2 -69.8 -6.1 -4.1 11.55
entry subsidy -7.5 -8.6 -7.8 -66.8 -11.0 -4.5 8.66

κ = 0.0 efficient 59.6 44.5 18.0 20.1 100.4 4.1 8.67
uniform subsidy 51.8 35.8 17.0 9.5 88.5 1.5 5.90
size-dependent subsidy 5.3 6.2 1.0 8.3 6.6 2.3 2.87
entry subsidy 6.3 7.4 2.4 20.0 8.1 3.0 0.56

κ = +0.1 efficient 115.7 108.5 25.3 90.0 189.0 21.5 20.20
uniform subsidy 55.3 39.6 16.9 9.1 93.8 2.5 8.01
size-dependent subsidy 41.7 50.4 8.5 71.3 53.7 17.9 13.74
entry subsidy 47.9 57.9 11.1 91.7 62.7 20.6 11.56

The first six columns report the percentage change from the initial distorted steady state with M = 1.15 to the new steady
state. The last column reports the consumption equivalent welfare gains (including transitional dynamics). The parameter κ
controls the strength of the variety effect: κ = 0 is our benchmark model, κ = −0.1 has a much weaker variety effect, κ = +0.1
has a much stronger variety effect. The alternative policies are (i): the efficient allocation, where all markups are removed, (ii) a
uniform subsidy that eliminates the aggregate markup, (iii) size-dependent subsidies that eliminate misallocation and the entry
distortion, and (iv) the uniform entry subsidy that leads to the largest welfare gain. Regardless of κ the amount of misallocation
is the same as in our benchmark. But there are now larger welfare gains because of a more distorted entry margin.
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